Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
BMC Psychiatry ; 24(1): 227, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532386

ABSTRACT

BACKGROUND: One of the most robust risk factors for developing a mood disorder is having a parent with a mood disorder. Unfortunately, mechanisms explaining the transmission of mood disorders from one generation to the next remain largely elusive. Since timely intervention is associated with a better outcome and prognosis, early detection of intergenerational transmission of mood disorders is of paramount importance. Here, we describe the design of the Mood and Resilience in Offspring (MARIO) cohort study in which we investigate: 1. differences in clinical, biological and environmental (e.g., psychosocial factors, substance use or stressful life events) risk and resilience factors in children of parents with and without mood disorders, and 2. mechanisms of intergenerational transmission of mood disorders via clinical, biological and environmental risk and resilience factors. METHODS: MARIO is an observational, longitudinal cohort study that aims to include 450 offspring of parents with a mood disorder (uni- or bipolar mood disorders) and 100-150 offspring of parents without a mood disorder aged 10-25 years. Power analyses indicate that this sample size is sufficient to detect small to medium sized effects. Offspring are recruited via existing Dutch studies involving patients with a mood disorder and healthy controls, for which detailed clinical, environmental and biological data of the index-parent (i.e., the initially identified parent with or without a mood disorder) is available. Over a period of three years, four assessments will take place, in which extensive clinical, biological and environmental data and data on risk and resilience are collected through e.g., blood sampling, face-to-face interviews, online questionnaires, actigraphy and Experience Sampling Method assessment. For co-parents, information on demographics, mental disorder status and a DNA-sample are collected. DISCUSSION: The MARIO cohort study is a large longitudinal cohort study among offspring of parents with and without mood disorders. A unique aspect is the collection of granular data on clinical, biological and environmental risk and resilience factors in offspring, in addition to available parental data on many similar factors. We aim to investigate the mechanisms underlying intergenerational transmission of mood disorders, which will ultimately lead to better outcomes for offspring at high familial risk.


Subject(s)
Child of Impaired Parents , Resilience, Psychological , Child , Humans , Child of Impaired Parents/psychology , Cohort Studies , Longitudinal Studies , Mood Disorders/psychology , Parents/psychology
2.
Psychol Med ; : 1-12, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018135

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) is a strong risk factor for psychiatric disorders but serves in its current definitions as an umbrella for various fundamentally different childhood experiences. As first step toward a more refined analysis of the impact of CM, our objective is to revisit the relation of abuse and neglect, major subtypes of CM, with symptoms across disorders. METHODS: Three longitudinal studies of major depressive disorder (MDD, N = 1240), bipolar disorder (BD, N = 1339), and schizophrenia (SCZ, N = 577), each including controls (N = 881), were analyzed. Multivariate regression models were used to examine the relation between exposure to abuse, neglect, or their combination to the odds for MDD, BD, SCZ, and symptoms across disorders. Bidirectional Mendelian randomization (MR) was used to probe causality, using genetic instruments of abuse and neglect derived from UK Biobank data (N = 143 473). RESULTS: Abuse was the stronger risk factor for SCZ (OR 3.51, 95% CI 2.17-5.67) and neglect for BD (OR 2.69, 95% CI 2.09-3.46). Combined CM was related to increased risk exceeding additive effects of abuse and neglect for MDD (RERI = 1.4) and BD (RERI = 1.1). Across disorders, abuse was associated with hallucinations (OR 2.16, 95% CI 1.55-3.01) and suicide attempts (OR 2.16, 95% CI 1.55-3.01) whereas neglect was associated with agitation (OR 1.24, 95% CI 1.02-1.51) and reduced need for sleep (OR 1.64, 95% CI 1.08-2.48). MR analyses were consistent with a bidirectional causal effect of abuse with SCZ (IVWforward = 0.13, 95% CI 0.01-0.24). CONCLUSIONS: Childhood abuse and neglect are associated with different risks to psychiatric symptoms and disorders. Unraveling the origin of these differences may advance understanding of disease etiology and ultimately facilitate development of improved personalized treatment strategies.

3.
J Affect Disord ; 325: 321-328, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36623568

ABSTRACT

BACKGROUND: Electroconvulsive therapy (ECT) in patients with major depression is associated with volume changes and markers of neuroplasticity in the hippocampus, in particular in the dentate gyrus. It is unclear if these changes are associated with cognitive side effects. OBJECTIVES: We investigated whether changes in cognitive functioning after ECT were associated with hippocampal structural changes. It was hypothesized that 1) volume increase of hippocampal subfields and 2) changes in perfusion and diffusion of the hippocampus correlated with cognitive decline. METHODS: Using ultra high field (7 T) MRI, intravoxel incoherent motion and volumetric data were acquired and neurocognitive functioning was assessed before and after ECT in 23 patients with major depression. Repeated measures correlation analysis was used to examine the relation between cognitive functioning and structural characteristics of the hippocampus. RESULTS: Left hippocampal volume, left and right dentate gyrus and right CA1 volume increase correlated with decreases in verbal memory functioning. In addition, a decrease of mean diffusivity in the left hippocampus correlated with a decrease in letter fluency. LIMITATIONS: Due to methodological restrictions direct study of neuroplasticity is not possible. MRI is used as an indirect measure. CONCLUSION: As both volume increase in the hippocampus and MD decrease can be interpreted as indirect markers for neuroplasticity that co-occur with a decrease in cognitive functioning, our results may indicate that neuroplastic processes are affecting cognitive processes after ECT.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Electroconvulsive Therapy/adverse effects , Electroconvulsive Therapy/methods , Pilot Projects , Treatment Outcome , Hippocampus/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Magnetic Resonance Imaging , Perfusion
4.
Nat Genet ; 54(5): 541-547, 2022 05.
Article in English | MEDLINE | ID: mdl-35410376

ABSTRACT

We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology.


Subject(s)
Bipolar Disorder , Schizophrenia , A Kinase Anchor Proteins/genetics , Bipolar Disorder/genetics , Exome/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Schizophrenia/genetics , Exome Sequencing
5.
Schizophr Bull ; 48(3): 684-694, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35179210

ABSTRACT

Functional connectome alterations, including modular network organization, have been related to the experience of hallucinations. It remains to be determined whether individuals with hallucinations across the psychosis continuum exhibit similar alterations in modular brain network organization. This study assessed functional connectivity matrices of 465 individuals with and without hallucinations, including patients with schizophrenia and bipolar disorder, nonclinical individuals with hallucinations, and healthy controls. Modular brain network organization was examined at different scales of network resolution, including (1) global modularity measured as Qmax and Normalised Mutual Information (NMI) scores, and (2) within- and between-module connectivity. Global modular organization was not significantly altered across groups. However, alterations in within- and between-module connectivity were observed for higher-order cognitive (e.g., central-executive salience, memory, default mode), and sensory modules in patients with schizophrenia and nonclinical individuals with hallucinations relative to controls. Dissimilar patterns of altered within- and between-module connectivity were found bipolar disorder patients with hallucinations relative to controls, including the visual, default mode, and memory network, while connectivity patterns between visual, salience, and cognitive control modules were unaltered. Bipolar disorder patients without hallucinations did not show significant alterations relative to controls. This study provides evidence for alterations in the modular organization of the functional connectome in individuals prone to hallucinations, with schizophrenia patients and nonclinical individuals showing similar alterations in sensory and higher-order cognitive modules. Other higher-order cognitive modules were found to relate to hallucinations in bipolar disorder patients, suggesting differential neural mechanisms may underlie hallucinations across the psychosis continuum.


Subject(s)
Connectome , Psychotic Disorders , Schizophrenia , Brain/diagnostic imaging , Hallucinations/diagnostic imaging , Hallucinations/etiology , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Schizophrenia/complications , Schizophrenia/diagnostic imaging
6.
Biol Psychiatry ; 91(6): 572-581, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35027166

ABSTRACT

BACKGROUND: Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS: Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS: We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS: Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.


Subject(s)
Epigenome , Microglia , Brain/metabolism , DNA Methylation , Humans , Microglia/metabolism , Mood Disorders/genetics , Transcriptome
7.
Psychoneuroendocrinology ; 137: 105629, 2022 03.
Article in English | MEDLINE | ID: mdl-34973541

ABSTRACT

Empathy is an essential component of sensitive caregiving behavior, which in turn is an important predictor of children's healthy social-emotional development. The oxytocin (OXT) system plays a key role in promoting sensitive parenting and empathy. In this study, we investigated how OXT system gene methylation was associated with empathic processes in nulliparous women (M age = 23.60, SD =0.44)-measuring both physiological facial muscle responses and ratings of compassion and positive affect to affective images depicting children. Linear mixed effects analyses demonstrated that lower methylation levels in the OXT and OXTR genes were related to enhanced empathic responses. The effect of OXT system gene methylation on empathic processes was partly qualified by an interaction with individual variations in women's care motivation. Our findings provide experimental evidence for an association between the methylation of OXT system genes and empathy.


Subject(s)
DNA Methylation , Empathy , Oxytocin , Receptors, Oxytocin , Adult , Child , Emotions , Female , Humans , Oxytocin/genetics , Receptors, Oxytocin/genetics , Young Adult
8.
Biol Psychiatry ; 91(8): 718-726, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35063188

ABSTRACT

BACKGROUND: Genomic loci where recurrent pathogenic copy number variants are associated with psychiatric phenotypes in the population may also be sensitive to the collective impact of multiple functional low-frequency single nucleotide variants (SNVs). METHODS: We examined the cumulative impact of low-frequency, functional SNVs within the 22q11.2 region on schizophrenia risk in a discovery cohort and an independent replication cohort (N = 1933 and N = 11,128, respectively), as well as the impact on educational attainment (EA) in a third, independent, general population cohort (N = 2081). In the discovery and EA cohorts, SNVs were identified using genotyping arrays; in the replication cohort, whole-exome sequencing was available. For verification, we compared the regional SNV count for schizophrenia cases in the discovery cohort with a normative count distribution derived from a large population dataset (N = 26,500) using bootstrap procedures. RESULTS: In both schizophrenia cohorts, an increased regional SNV burden (≥4 low-frequency SNVs) in the 22q11.2 region was associated with schizophrenia (discovery cohort: odds ratio = 7.48, p = .039; replication cohort: odds ratio = 1.92, p = .004). In the EA cohort, an increased regional SNV burden at 22q11.2 was associated with decreased EA (odds ratio = 4.65, p = .049). Comparing the SNV count for schizophrenia cases with a normative distribution confirmed the unique nature of the distribution for schizophrenia cases (p = .002). CONCLUSIONS: In the general population, an increased burden of low-frequency, functional SNVs in the 22q11.2 region is associated with schizophrenia risk and a decrease in EA. These findings suggest that in addition to structural variation, a cumulative regional burden of low-frequency, functional SNVs in the 22q11.2 region can also have a relevant phenotypic impact.


Subject(s)
Schizophrenia , Cohort Studies , DNA Copy Number Variations/genetics , Humans , Phenotype , Schizophrenia/genetics
9.
J Affect Disord ; 295: 72-79, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34416620

ABSTRACT

BACKGROUND: Women with bipolar I disorder are at high risk for severe episodes after childbirth, but there is no study that provides an overview on bipolar episode risk both during pregnancy and after childbirth, miscarriage and induced abortion. The aim of this study was to determine the episode risk during all pregnancy outcomes subdivided by first and subsequent pregnancies. METHODS: Participants were 436 women with bipolar I disorder from the Dutch Bipolar Cohort, having 919 pregnancies of which 762 resulted in a live childbirth, 118 ended in a miscarriage and 39 ended in induced abortion. Women reported on the occurrence of manic or depressed episodes during the perinatal period. Information about medication use was obtained by questionnaires. RESULTS: Episode risk was 5.2% during pregnancy, and 30.1% in the postpartum period, with a peak in the early postpartum period. Risk of an episode was highest after live birth (34.4%), and lower after miscarriage (15.2%) and induced abortion (27.8%). Women with an episode during pregnancy or postpartum were less likely to have a second child compared to women with an uneventful first pregnancy (cOR=0.34; 95%CI: 0.22-0.51; p<0.001); if they had a second child their risk of an episode was significantly elevated with a subsequent pregnancy (cOR=6.17; 95%CI: 3.64-10.45; p<0.001). LIMITATIONS: Retrospective cross-sectional design with assessment (partial) through self-report in a homogeneous population. CONCLUSIONS: Women with bipolar I disorder have a six times higher risk of an episode after delivery compared to during pregnancy, therefore preventive strategies are particularly important immediately after delivery.


Subject(s)
Bipolar Disorder , Bipolar Disorder/epidemiology , Child , Cross-Sectional Studies , Female , Humans , Postpartum Period , Pregnancy , Retrospective Studies , Risk Factors
11.
Sci Rep ; 11(1): 1108, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441965

ABSTRACT

Hallucinations may arise from an imbalance between sensory and higher cognitive brain regions, reflected by alterations in functional connectivity. It is unknown whether hallucinations across the psychosis continuum exhibit similar alterations in functional connectivity, suggesting a common neural mechanism, or whether different mechanisms link to hallucinations across phenotypes. We acquired resting-state functional MRI scans of 483 participants, including 40 non-clinical individuals with hallucinations, 99 schizophrenia patients with hallucinations, 74 bipolar-I disorder patients with hallucinations, 42 bipolar-I disorder patients without hallucinations, and 228 healthy controls. The weighted connectivity matrices were compared using network-based statistics. Non-clinical individuals with hallucinations and schizophrenia patients with hallucinations exhibited increased connectivity, mainly among fronto-temporal and fronto-insula/cingulate areas compared to controls (P < 0.001 adjusted). Differential effects were observed for bipolar-I disorder patients with hallucinations versus controls, mainly characterized by decreased connectivity between fronto-temporal and fronto-striatal areas (P = 0.012 adjusted). No connectivity alterations were found between bipolar-I disorder patients without hallucinations and controls. Our results support the notion that hallucinations in non-clinical individuals and schizophrenia patients are related to altered interactions between sensory and higher-order cognitive brain regions. However, a different dysconnectivity pattern was observed for bipolar-I disorder patients with hallucinations, which implies a different neural mechanism across the psychosis continuum.


Subject(s)
Bipolar Disorder/physiopathology , Brain/physiopathology , Connectome , Hallucinations/physiopathology , Psychotic Disorders/physiopathology , Schizophrenia/physiopathology , Adult , Bipolar Disorder/diagnostic imaging , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Cross-Sectional Studies , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Hallucinations/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Psychotic Disorders/diagnostic imaging , Schizophrenia/diagnostic imaging , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology
12.
Psychol Med ; 51(9): 1562-1569, 2021 07.
Article in English | MEDLINE | ID: mdl-32234100

ABSTRACT

BACKGROUND: The output of many healthy physiological systems displays fractal fluctuations with self-similar temporal structures. Altered fractal patterns are associated with pathological conditions. There is evidence that patients with bipolar disorder have altered daily behaviors. METHODS: To test whether fractal patterns in motor activity are altered in patients with bipolar disorder, we analyzed 2-week actigraphy data collected from 106 patients with bipolar disorder type I in a euthymic state, 73 unaffected siblings of patients, and 76 controls. To examine the link between fractal patterns and symptoms, we analyzed 180-day actigraphy and mood symptom data that were simultaneously collected from 14 patients. RESULTS: Compared to controls, patients showed excessive regularity in motor activity fluctuations at small time scales (<1.5 h) as quantified by a larger scaling exponent (α1 > 1), indicating a more rigid motor control system. α1 values of siblings were between those of patients and controls. Further examinations revealed that the group differences in α1 were only significant in females. Sex also affected the group differences in fractal patterns at larger time scales (>2 h) as quantified by scaling exponent α2. Specifically, female patients and siblings had a smaller α2 compared to female controls, indicating more random activity fluctuations; while male patients had a larger α2 compared to male controls. Interestingly, a higher weekly depression score was associated with a lower α1 in the subsequent week. CONCLUSIONS: Our results show sex- and scale-dependent alterations in fractal activity regulation in patients with bipolar disorder. The mechanisms underlying the alterations are yet to be determined.


Subject(s)
Bipolar Disorder/diagnosis , Fractals , Motor Activity/physiology , Actigraphy , Adult , Affect , Aged , Biomarkers , Case-Control Studies , Circadian Rhythm/physiology , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Netherlands , Siblings , Sleep , Sleep Wake Disorders/diagnosis
13.
Front Psychiatry ; 11: 367, 2020.
Article in English | MEDLINE | ID: mdl-32499723

ABSTRACT

Adolescence is a critical developmental period characterized by heightened levels of depressive and anxiety symptoms. Experiencing chronic or environmental stress, for example, as a result of traumatic events or insensitive parenting, increases the risk for depression and anxiety. However, not all adolescents develop depressive or anxiety symptoms following environmental stressors, due to differences in stress resilience. One of the factors involved in stress resilience is enhanced functionality of the mineralocorticoid receptor (MR), one of the two brain receptors for the stress hormone cortisol. High levels of MR functionality result in relatively lower rates of depression, particularly in women that experienced stress. However, much less is known about MR functionality in relation to the development of adolescent depression and to other internalizing behavior problems such as anxiety. We therefore examined whether the effects of a functional MR haplotype (i.e., the MR CA haplotype) on the development of depressive and anxiety symptoms are sex-dependent, as well as interact with environmental stressors. In a community sample of adolescents (N = 343, 9 waves between age 13 and 24), environmental stressors were operationalized as parental psychological control and childhood trauma. Results showed a sex-dependent effect of MR CA haplotype on the development of depressive symptoms but not for anxiety symptoms. MR CA haplotypes were protective for girls but not for boys. This study sheds more light on the sex-dependent effects of MR functionality related to the development of depressive and anxiety symptoms during adolescence.

14.
Psychol Med ; 50(15): 2575-2586, 2020 11.
Article in English | MEDLINE | ID: mdl-31589133

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is a highly heritable mood disorder with complex genetic architecture and poorly understood etiology. Previous transcriptomic BD studies have had inconsistent findings due to issues such as small sample sizes and difficulty in adequately accounting for confounders like medication use. METHODS: We performed a differential expression analysis in a well-characterized BD case-control sample (Nsubjects = 480) by RNA sequencing of whole blood. We further performed co-expression network analysis, functional enrichment, and cell type decomposition, and integrated differentially expressed genes with genetic risk. RESULTS: While we observed widespread differential gene expression patterns between affected and unaffected individuals, these effects were largely linked to lithium treatment at the time of blood draw (FDR < 0.05, Ngenes = 976) rather than BD diagnosis itself (FDR < 0.05, Ngenes = 6). These lithium-associated genes were enriched for cell signaling and immune response functional annotations, among others, and were associated with neutrophil cell-type proportions, which were elevated in lithium users. Neither genes with altered expression in cases nor in lithium users were enriched for BD, schizophrenia, and depression genetic risk based on information from genome-wide association studies, nor was gene expression associated with polygenic risk scores for BD. CONCLUSIONS: These findings suggest that BD is associated with minimal changes in whole blood gene expression independent of medication use but emphasize the importance of accounting for medication use and cell type heterogeneity in psychiatric transcriptomic studies. The results of this study add to mounting evidence of lithium's cell signaling and immune-related mechanisms.


Subject(s)
Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Gene Expression/drug effects , Lithium Compounds/therapeutic use , Adult , Case-Control Studies , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Male , Middle Aged , Risk Assessment
15.
Mol Psychiatry ; 25(5): 965-976, 2020 05.
Article in English | MEDLINE | ID: mdl-31142820

ABSTRACT

Disruption of persistent, stress-associated memories is relevant for treating posttraumatic stress disorder (PTSD) and related syndromes, which develop in a subset of individuals following a traumatic event. We previously developed a stress-enhanced fear learning (SEFL) paradigm in inbred mice that produces PTSD-like characteristics in a subset of mice, including persistently enhanced memory and heightened cFos in the basolateral amygdala complex (BLC) with retrieval of the remote (30-day-old) stress memory. Here, the contribution of BLC microRNAs (miRNAs) to stress-enhanced memory was investigated because of the molecular complexity they achieve through their ability to regulate multiple targets simultaneously. We performed small-RNA sequencing (smRNA-Seq) and quantitative proteomics on BLC tissue collected from mice 1 month after SEFL and identified persistently changed microRNAs, including mir-135b-5p, and proteins associated with PTSD-like heightened fear expression. Viral-mediated overexpression of mir-135b-5p in the BLC of stress-resilient animals enhanced remote fear memory expression and promoted spontaneous renewal 14 days after extinction. Conversely, inhibition of BLC mir-135b-5p in stress-susceptible animals had the opposite effect, promoting a resilient-like phenotype. mir-135b-5p is highly conserved across mammals and was detected in post mortem human amygdala, as well as human serum samples. The mir-135b passenger strand, mir-135b-3p, was significantly elevated in serum from PTSD military veterans, relative to combat-exposed control subjects. Thus, miR-135b-5p may be an important therapeutic target for dampening persistent, stress-enhanced memory and its passenger strand a potential biomarker for responsivity to a mir-135-based therapeutic.


Subject(s)
Fear/physiology , Memory/physiology , MicroRNAs/genetics , Animals , Basolateral Nuclear Complex/physiology , Female , Humans , Male , Mice , MicroRNAs/analysis , MicroRNAs/blood
17.
Schizophr Res ; 217: 114-123, 2020 03.
Article in English | MEDLINE | ID: mdl-31130400

ABSTRACT

A role for immune processes in the pathogenesis of schizophrenia has been suggested by genetic and epidemiological studies, as well as cross-sectional studies on blood and brain samples. However, results are heterogeneous, which is likely caused by low samples sizes, insufficient control of confounders that influence immune processes, and potentially publication bias. Large hypothesis-free 'omic' studies partially circumvent these problems and could provide further evidence for a role of immune pathways in schizophrenia. In this review we assessed whether the largest genome, transcriptome and methylome studies in schizophrenia to date support a link with the immune system. We constructed an overview of the schizophrenia-associated genes and transcripts that were identified in these large 'omic' studies. We then performed a hypothesis-driven analysis to examine the association and enrichment of immune system-related genes and transcripts in these datasets. Additionally, we reviewed secondary analyses that were previously performed on these 'omic' studies. Except for the link between complement factor 4 (C4), we found limited evidence for a role of microglia and immune processes among genetic risk variants. Transcriptome and methylome studies point towards alterations in immune system related genes, pathways and cells. This includes changes in microglia, as well as complement, nuclear factor-κB, toll-like receptor and interferon signaling pathways. Many of these associated immune-related genes and pathways have been shown to be involved in neurodevelopment and neuronal functioning. Additional replication of these findings is needed, but once further conformation is provided, these findings could be a potentially interesting target for future therapies.


Subject(s)
Schizophrenia , Cross-Sectional Studies , Humans , Immune System , Schizophrenia/genetics , Signal Transduction , Transcriptome
18.
Front Genet ; 10: 1042, 2019.
Article in English | MEDLINE | ID: mdl-31824554

ABSTRACT

Posttraumatic stress disorder (PTSD) is a psychiatric disorder that can develop upon exposure to a traumatic event. While most people are able to recover promptly, others are at increased risk of developing PTSD. However, the exact underlying biological mechanisms of differential susceptibility are unknown. Identifying biomarkers of PTSD could assist in its diagnosis and facilitate treatment planning. Here, we identified serum microRNAs (miRNAs) of subjects that underwent a traumatic event and aimed to assess their potential to serve as diagnostic biomarkers of PTSD. Next-generation sequencing was performed to examine circulating miRNA profiles of 24 members belonging to the Dutch military cohort Prospective Research in Stress-Related Military Operations (PRISMO). Three groups were selected: "susceptible" subjects who developed PTSD after combat exposure, "resilient" subjects without PTSD, and nonexposed control subjects (N = 8 per group). Differential expression analysis revealed 22 differentially expressed miRNAs in PTSD subjects compared to controls and 1 in PTSD subjects compared to resilient individuals (after multiple testing correction and a log2 fold-change cutoff of ≥|1|). Weighted Gene Coexpression Network Analysis (WGCNA) identified a module of coexpressed miRNAs which could distinguish between the three groups. In addition, receiver operating characteristic curve analyses suggest that the miRNAs with the highest module memberships could have a strong diagnostic accuracy as reflected by high areas under the curves. Overall, the results of our pilot study suggest that serum miRNAs could potentially serve as diagnostic biomarkers of PTSD, both individually or grouped within a cluster of coexpressed miRNAs. Larger studies are now needed to validate and build upon these preliminary findings.

19.
Nat Neurosci ; 22(7): 1196, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31168101

ABSTRACT

Several occurrences of the word 'schizophrenia' have been re-worded as 'liability to schizophrenia' or 'schizophrenia risk', including in the title, which should have been "GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability," as well as in Supplementary Figures 1-10 and Supplementary Tables 7-10, to more accurately reflect the findings of the work.

20.
Neurosci Biobehav Rev ; 96: 127-142, 2019 01.
Article in English | MEDLINE | ID: mdl-30496762

ABSTRACT

The human oxytocin (OXT) system is implicated in the regulation of complex social behaviors, as well as in psychopathologies characterized by social deficits. Emerging evidence suggests that variation in epigenetic regulation of the oxytocin receptor gene (OXTR) provides the oxytocin system with flexibility in response to environmental events, especially those occurring during early childhood. Changes in DNA methylation patterns of OXTR associated with these events may reflect biological alterations of social sensitivity. This is often related to an increased risk of developing mental disorders later in life. Here, we systematically reviewed all human studies (n = 30) discussing OXTR methylation in relation to socio-behavioral phenotypes. As such, we provide a complete and up-to-date overview of the literature that will aid future research in the interdisciplinary field of epigenetics and socio-behavioral sciences.


Subject(s)
Behavior/physiology , Epigenesis, Genetic , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Humans , Mental Disorders/genetics , Mental Disorders/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...